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CHAPTER 17 -- MAGNETIC INDUCTION

QUESTION & PROBLEM  SOLUTIONS

17.1)  What is magnetic flux?  How is it defined?  What does it do?
Solution:  Any vector field that passes through a surface will produce a flux through
that surface.  If a constant magnetic field passes through the face of a coil of area A,
for instance, the magnetic flux through the coil will equal B.A, where A is an area
vector whose magnitude is equal to the area of the coil's face and whose direction is
perpendicularly outward from the face.  If anything varies (i.e., the magnitude or
direction of B or A, or the angle between the two vectors), then a differential approach
must be used to determine the net flux.  Mathematically, that would be ∫B.dA.

17.2)  A coil is placed in the vicinity of a horseshoe magnet.
a.)  Once in place, is there a flux through the coil?

Solution:  The magnetic field lines associated with a
horseshoe magnet billow out leaving the north pole and
entering the south pole.  That means that magnetic field
lines are passing through the coil's face and there is a
magnetic flux through the coil.

b.)  Once in place, is there a current in the coil?  If so, why?  Also, if so, in
what direction will the current flow?

Solution:  There is nothing that would motivate charge to flow in this situation
(remember, magnetic fields don't act like electric fields), so there would be no
current in this situation.

17.3)  The coil alluded to in Problem 17.2 is placed in the vicinity of the same
horseshoe magnet, but this time the coil is rapidly pulled away from the
magnet.

a.)  Is there an initial flux through the coil?
Solution:  As was the case in Problem 2a, there is an initial magnetic flux through
the coil.

b.)  What happens to the flux as the coil is pulled away?
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FIGURE II
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Solution:  Pulling the coil away from the magnet decreases the magnetic field
through the coil's face.  This, in turn, decreases the magnetic flux through the
coil.

c.)  From the standard perspective associated with magnetic fields and
charges moving in magnetic fields, would you expect a current to flow in the coil
as the coil was pulled away from the magnet?  If so, why?  Also, in what direction
would the current flow?

Solution:  As far as the charges carried in the wire are concerned, they are
moving across magnetic field lines as the coil is pulled away from the magnet.
When this happens, they will experience a force (i.e., qvxB) resulting in a current
in the coil.  The direction of the current can be determined using the right-hand
rule.  It will be clockwise as viewed from the perspective shown in the sketch.

d.)  From Faraday's perspective, would you expect a current to flow in the
coil as the coil was pulled away from the magnet?  If so, how would Faraday
explain the current?  Also, how would he determine the direction of current flow?

Solution:  According to Faraday, a changing magnetic flux will induce an EMF in
the coil.  That EMF will produce a current whose magnetic field will either add to
or subtract from the external field (i.e., the field produced by the magnet).  What
determines which happens depends upon how the magnetic flux is changing.  If
it is increasing, the current will flow in such a way as to produce an induced B-
field which will fight the increase by subtracting from the external field.  If the
magnetic flux is decreasing, the current will flow so as to create an induced B-
field that adds to the external field, thereby diminishing the decrease.  In all
cases, the current's B-field will produce a magnetic flux of its own that will
OPPOSE the change of flux that started the process in the first place.  In this
case, the magnetic flux is decreasing.  A current in the clockwise direction will
produce a B-field that adds to the external field.  That will be the direction of the
induced current.  Note that this may seem a lot more complex than the
explanation given in Part c, but there will be situations in which this
approach/perspective is much cleaner and easier to deal with than the classical
view.

17.4)  Each of the loops in Figure II are
identical.  Each has a length of .2
meters, a width of .08 meters, and a
resistance of 4 ohms.  Each is moving
with a velocity magnitude of .28 m/s,
and Loops A, C, and F each have .05
meters of their lengths not in the
magnetic field at the time shown in the
sketch (that is, the length outside the
field at the time shown is .05 meters for
each of those loops).  The magnetic field
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in the shaded region is into the page with a magnitude of B = 3x10-2 teslas.
a.)  What is the direction of the induced current for each loop at the instant

shown in the sketch?
Solution:  Using Lenz's Law:
--Loop A:  No induced current as there is NO CHANGING FLUX.
--Loop C:  The external flux is decreasing.  A CLOCKWISE induced current will
produce an induced B-field INTO the page through the coil's face, which in turn
will produce an induced magnetic flux that will OPPOSE the decreasing external
flux.
--Loop D:  No current as there is NO CHANGING FLUX.
--Loop E:  The external flux is decreasing.  A CLOCKWISE current will generate
an induced flux that will OPPOSE the decreasing external flux.
--Loop F:  The externally produced flux is increasing.  A COUNTER-
CLOCKWISE current will produce an induced flux that will OPPOSE the
increasing external flux.

b.)  What is the induced EMF generated in Loops A, C, and F at the instant
shown?

Solution:  Using Faraday's Law:
--Loop A:  As there is no changing magnetic flux, the induced EMF in that coil
will be ZERO.
--Loop C:  We need to determine the loop's area change ∆ A over a given amount
of time ∆ t.  In general, if the loop travels a distance d moving with velocity v, we
can write:

                v = d/ ∆ t         ⇒    ∆ t = d/v.

To travel, say, .05 meters going .28 m/s, it will take time:

∆ t = (.05m)/(.28 m/s)
     = .179 seconds.  

During that time the area of the coil inside the magnetic field goes from Ao = (.08

m)(.15 m) to Af = (.08 m)(.1 m), or ∆ A = Af - Ao = (.08 m) (-.05 m) = -4x10-3 m2.

We know that the induced EMF will equal:

ε c = -Nc[ ∆ φm/ ∆ t]

          = -Nc [B( ∆ A)(cos 0o)/ ∆ t]

          = -(1)[(3x10-2 T) (-4x10-3 m2) (1) / (.179 s)]
          = 6.7x10-4 volts.

According to the current direction we determined in Part a, a positive induced
EMF evidently corresponds to a clockwise induced current.
--Loop F:  Following logic similar to that used on Loop C, and noting that in this
case the change of area goes from (.08 m)(.15 m) to (.08 m) (.2 m), or ∆ A = 4x10-3

m2, we can write:
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           ε F = -NF[ ∆ φm/ ∆ t]

    = -NF [B( ∆ A)(cos 0o)/ ∆ t]

    = -(1)[(3x10-2 T) (4x10-3 m2) (1) / (.179 s)]
    = -6.7x10-4 volts.

As the positive EMF in Loop C corresponds to a CLOCKWISE current, the
negative EMF in Loop F should correspond to a COUNTERCLOCKWISE
induced current.  According to Part a, that is exactly what happens.

Note:  The EMF in Loop C and in Loop F have the same magnitude because the
change of flux during the .179 second time interval was the same in both cases.

c.)  What is the magnitude and direction of the induced magnetic force felt
by Loop F at the instant shown?

Solution:  To get the force on a current-carrying wire that is bathed in a magnetic
field, we must apply the expression:

  F = iLxB

to each section of the wire in the B-
field (see figure), then add up all the
forces acting as shown below:

     Fnet =  F1 + F2 + F3 + F4.

We know that the magnitude of L in,
say, wire section #1 is equal to that
portion of the wire in the B-field, or
.15 meters.  We also know that the
magnitude  of B  is 3x10-2 teslas.
What we don't know is the magnitude
of the induced current i.  To get that,
we must determine the induced EMF,
then use i = ε B/R.  Using the MAGNITUDE of the induced EMF from Part b (we

just want the magnitude for the current calculation--we already know the curren-
t's direction is counterclockwise from Part a), we get:

i = ε B/R

   = (6.7x10-4 v)/(4 Ω)
   = 1.68x10-4 amps.

Noting that there is no magnetic force being applied to wire section #2 because it
is not in the magnetic field, we get:
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         Fnet =          F1               + F2 +           F3             +           F4

         = iL1B sin 90o(+i) + 0 + iL3B sin 90o(-i) + iL4B sin 90o(+j)

         = iL4B sin 90o(j)

         = (1.68x10-4  A)(.08 m)(3x10-2T)(1) (j)
         = (4.032x10-7 nts) (j).

Does this make sense?  Certainly!  The induced force will always oppose the
motion.  As the motion is downward, the net induced force should be upward in
the +j direction.  That is exactly what we have calculated.
Isn't this fun?

d.)  What is the direction of the induced magnetic force on Loops A, C, and D
at the instant shown?

Solution:  The net force on Loop A and Loop D will be zero as the induced EMF
in those loops is zero (hence the induced currents are zero).  The induced force in
Loop C will have the same magnitude as that of Loop F, but the direction will be
different.  How do you determine that direction?

The direction of the cross product iLxB yields the direction.  Try using it.
Notice that the direction of the force is always such that it opposes the physical
motion of the coil.  In the case of Loop C, the coil is moving in the +i direction, so
the force will be in the -i direction.

17.5)  Two coils share a common axis but are electrically
isolated from one another (that is, they aren't electrically
connected).  The coil on the left is attached to a variable
power supply (we'll call this the primary circuit).  The coil on
the right is attached only to a resistor and ammeter (we'll
call this the secondary circuit).  One of the more hyperactive
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corresponds to the current during the period between t = 0 and t = 2.2 seconds,
etc.).  Explain what must be happening to the power supply in the primary circuit
during each of those time periods.

Solution:  Every
time the power
supply voltage
changes, there
is an increase or
decrease of
current in the
primary circuit
(that is,
diprim/dt is non-

zero).  That
change of
current through
the primary coil
produces a
changing
magnetic flux
through both
coils via the steel rod.  With the changing flux comes an induced EMF across the secondary
coil ε sec which motivates current to flow in the secondary circuit (note that ε sec = isecR and

that our graph is that of isec).  We know from Faraday's Law that ε sec = -L(diprim/dt),

which further implies that diprim = -∫ ε secdt.  Evidently, what is happening in the primary

coil is related to the area under the EMFsec versus time graph, where the EMFsec versus

time graph is proportional to the graph we have been given (i.e., isec vs. time).  Using what

we know, then, yields the final graph as shown.  Note that conceptually, this all follows
nicely.  Think about it.  If the change in the primary voltage occurs for only a moment, we
will see a spike of induced current in the secondary, then nothing (where do you find a
spike in our graph--what kind of primary voltage change should go with that spike?).  If
the primary voltage changes linearly, we will see a constant induced current in the
secondary (where do you find a constant current--what kind of a primary voltage goes with
that?).  If the primary voltage changes as a quadratic, we will see an induced secondary
current that increases or decreases linearly with time (where do you find that on our
graph?).  And how big are the voltage changes?  They are proportional to the areas under
the current graphs over the time periods of interest.  As long as you don't get messed up
with the negative sign that is inherent in Faraday's Law, it's easy!

17.6)  The magnetic field down the axis of a coil varies with time as graphed to
the right.  On the graph, sketch the induced EMF set up in the coil.

Solution:  A change in the magnetic field will change the magnetic flux down the coil's
axis which will, in turn, induce an EMF across the coil.  If the magnetic field is
constant, there is no change in the magnetic flux and the induced EMF will be zero.
If the magnetic field changes linearly, the induced EMF will be a constant.  In fact,
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the size of the EMF
is determined using
ε  = -N(d φ m /dt) =

-NAcosθ (dB/dt),
where N  is the
number of winds in
the coil, A  is the
constant  cross
sectional area of the
coil, and θ  is the
angle between B
and A  (it is
assumed to be zero
degrees in this
case).  In other
words, the induced
EMF is related to
the slope of the
magnet ic  f ie ld
function (actually, it's minus the slope . . .).  In any case, the EMF's graph is
superimposed on the original B-field graph.

17.7)  If the graph in Problem 17.6 had been of the EMF set up in the coil as a
function of time, what could you say about the magnetic flux through the coil?

Solution:  In general, if the EMF is related to the slope of the magnetic field function,
the magnetic field function will be related to the area under the EMF graph.

17.8)  A 6-turn circular coil whose radius is .03 meters and whose net resistance
is 12 Ws is placed squarely (that is, A and B are parallel to one another) in a
magnetic field whose direction is out of the page and whose magnitude is 2.3
teslas.

a.)  What is the coil's initial magnetic flux?
Solution:  The magnetic flux is:

φm = B.A

φm = BA cos θ

       = (2.3 T)[(.03 m)2] cos 0o

              = 6.5x10-3 webers.

b.)  If the field increases at a rate of .6 teslas per second, what is the
magnitude and direction of the induced current in the coil?

Solution:  This problem is most easily done using Calculus, so that's the way we
will go.  The area vector is not changing.  The magnetic field vector is changing
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and we know the rate at which that change occurs (i.e., dB/dt).  Noting that d φ m
= A(dB) and, for this case, d φ m/dt = A(dB/dt), Faraday's Law can be written as:

         ε  = -N [d φm/dt]

= -N  [      A            (dB/dt)   (cos 0o)]
     = -(6) [(.03 m)2   (.6 T/sec)     (1)   ]

     = -1x10-2 volts.

Using i = ε /R, we get a current magnitude of:

i = (10-2 V)/(12 Ω)
  = 8.33x10-4 amps.

According to Lenz's Law, the current should flow CLOCKWISE.

c.)  Go back to the original situation.  The coil is made to rotate about its
vertical axis at an angular frequency of ω  = 55 radians per second.  That means
the induced EMF is AC.

i.)  What is the frequency of the AC current generated?
Solution:  The frequency of the AC current will be the same as the frequency of
the coil's rotation.  As   ω = 2πν , we can write:

                ν = ω / 2π
                 = (55 rad/sec)/(2)
                 = 8.75 hz.

ii.)  Determine an expression for the induced EMF in the circuit.
Solution:  Again, using Calculus:  In this case, B and A are constant while the
angle between the two vectors changes with time.  We can write the angle as a
function of time by noting that   φ = ωt .  With this, Faraday's Law yields:

             

  

ε = −N
dφm

dt

  = −N
d BA cosωt( )

dt

  = −NBA
d cosωt( )

dt

  = −NBAω − sin ωt[ ]
  = NBAω sin ωt( ).

Putting in the numbers yields:

         ε = 2.15sin(55t)  volts.
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FIGURE III
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L17.9)   For the RL circuit shown in Figure III, the

inductance is 1.5 henrys and the inductor's internal
resistance is 6 ohms.  A current of 2.5 amps has been
flowing in the circuit for a long time.  At t = 0, the
power is switched off and the current begins to die.

a.)  What is the voltage across the inductor
BEFORE t = 0?

Solution:  Before the current begins to change,
the only voltage drop across the inductor is due
to the internal resistance inherent within the
inductor's wire.  That means:

VL = irL
       = (2.5 A)(6 Ω)
       = 15 volts.

b.)  After .05 seconds, the current has dropped to approximately one-third of
its original value.  Determine the resistance of the resistor R.  (Hint: think about
the time constant of an RL circuit and what it tells you).

Solution:  The time constant for an inductor/resistor circuit tells us how long it
takes for the current to reach .63 of its maximum (assuming the switch closes at
t = 0) or, if the system has been turned off as is the case here, the time it takes
for the current to FALL to .37 of its maximum.  In other words, knowing that it
took .05 seconds to hit approximately one-third of its original value after the
switch is opened means the time constant for the RL circuit is approximately .05
seconds.  Noting that the total resistance in the circuit is (rL + R) and remember-

ing that the time constant for an RL circuit is τ RL = L/(R + rL), we can write:

        L / (R + rL) = .05

⇒        R + (6 Ω) = [(1.5 H) / (.05)]
             ⇒        R = 24 Ω.

c.)  How much POWER does the inductor provide to the circuit over the .05
second time period alluded to in Part b?  (Hint:  Think about  the definition of
power and what you know about stored energy in a current-carrying inductor).

Solution:  The energy stored in a current-carrying inductor is equal to (1/2)Li2.  If
that value decreases, which it will as the current decreases, the "lost" energy
goes into driving current in the circuit even longer than expected (remember,
inductors are coils and coils hate to have the flux through their cross-section
change).  The amount of energy provided to the circuit is equal to (1/2)Lif

2 -

(1/2)Lio
2 (this number will actually be negative--the negative telling you that the

inductor is losing that amount of energy to the circuit). As POWER is defined as
the work done (read this "energy given up") per unit time, then:
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P = [(1/2)Lif
2 - (1/2)Lio

2]/ ∆ t

    = [.5(1.5 H)[.33(2.5 a)]2 - .5(1.5 H)(2.5 a)2]/(.05 sec)
    = -83.5 watts.

d.)  The power given up by the inductor: where did it go?
Solution:  The energy goes into driving current through the circuit even after the
battery has been taken out of the circuit by the switch.  That is, if the resistor is a
light bulb, it will "burn" very bright with the initial change, then dampen out over
some period of time (how long this takes depends upon the resistance in the circuit).

17.10)  A rectangular coil of area Ao  has N turns in it.  It
is rotated in a time-varying magnetic field (see Figure V)
equal to Boe-kt, where k is a constant and Bo is the
amplitude of the magnetic field.  Assuming the frequency
of the rotation is n:

a.)  Determine the EMF in the coil as a function of
time.

Solution:  Once again, using Calculus:  We can take
care of the rotation by writing the time-varying
angle between A and B as   θ = ωt  (we can put in
the   ω = 2πν  later).  That makes the magnetic flux look like:
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o
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b.)  At what point in time will the magnitude of the EMF be at a maximum?
Solution:  More Calculus:  To determine the maximum value of the EMF, we
must determine the time when the rate of change of the EMF is zero (this is a
standard maximization problem).  Doing this process yields:

    

d
dt

NB A
d e k t t

dt

NB A
d e k t t

dt

NB A k e k t t e k t t

o o

kt

o o

kt

o o
kt kt

ε ω ω ω

ω ω ω

ω ω ω ω ω ω ω

=
+[ ]( )

=
+[ ]( )

= − +[ ] + − +[ ][ ]

−

−

− −

cos sin

cos sin

( ) cos sin sin cos .

     

     2

The time-derivative of the EMF expression yields the slope of the EMF function.
As maxima or minima have tangent-slopes equal to zero, we can write:

    

d
dt

NB A k e k t t e k t to o
kt ktε ω ω ω ω ω ω ω= − +[ ] + − +[ ][ ]

=

− −( ) cos sin sin cos

.

2

0    

Canceling out the NBoAoe-kt terms and multiplying by -1, we can write:
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Be impressed.  The units of the inverse tangent are radians; the units of the
coefficient are seconds (remember, because radians is a generic term, the units of
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w is technically seconds-1).  Everything seems to be working, at least as far as
the units go.

17.11)  A fixed circular coil of radius R is placed in a
magnetic field that varies as 12t3- 4.5t2.  If the coil has N
winds and A is defined as out of the page (i.e., in the +k-
direction):

a.)  Is B into or out of the page at t = .2 seconds?
Solution:  Evaluating B = 12t3 - 4.5t2 at t = .2 seconds
yields B = -.084 teslas.  The negative sign implies that B
is into the page at t = .2 seconds.

b.)  Derive a general expression for the magnetic flux through the coil.
Solution:  The general expression for the magnetic flux is:
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c.)  What is the general expression for the induced EMF in the coil?
Solution:  Again, with the Calculus: The induced EMF is:

    

ε = −N
dφm

dt

  = −N
d 12t3 − 4.5t2( )(πR2 )( )

dt

     

  

= − π
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= − π −[ ]
N R

d t t
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N R t t

2
3 2

2 2
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36 9

.

.

d.)  Determine the two points in time when the induced EMF is zero.
Solution:   The EMF will equal zero when 36t2 - 9t = 0.  This will occur at t = 0
and at t = 9/36 = 1/4 = .25 seconds.



         Solutions--Ch. 17  (Magnetic Induction)

945

time

.2 .3.1 .4

-0.10

-0.05

magnetic
    field

FIGURE VIII

0

e.)  What is the direction of the current flow:
i.)  Just before t = .25 seconds?

Solution:  The magnetic flux change is what governs the direction of the induced
current.  Although it isn't always true, in this problem the changing flux is due
solely to the changing magnetic field (A and the angle between A and B are both
fixed).  In other words, for the just before t = .25 seconds part, we need to know:
--How the external magnetic field is changing just before t = .25 seconds (this will
tell us if the induced magnetic field adds to or subtracts from the external
magnetic field) and;
--The direction of the external magnetic field just before t = .25 seconds (this
tells us in which direction the addition or subtraction must occur).
To make things easier, let's begin by graphing the magnetic field function.  To do
so:
--We will use the magnetic field expression given in the problem for points in time
around t = .25 seconds, and;
--We can use the fact that the EMF is zero at t = .25 seconds (that means the
slope of the magnetic flux must be zero at that point in time which, in this case,
means the slope of the magnetic field expression must be zero at that point in
time).
--Putting it all together, we get the graph shown in the sketch.  So for just before t
= .25 seconds:

--From the graph, the
magnetic field is negative
and, hence, into the page
just before t = .25
seconds.
--The magnetic field is
getting bigger (i.e., more
negative) just before t =
.25 seconds.
--An increasing magnetic
field (hence, magnetic
flux) will induce a current
that fights the increase.
--The induced magnetic field that fights an increasing external magnetic field
directed into the page will itself be directed out of the page.
--The induced current that produces such an induced field will be in the
counterclockwise direction.  That is the direction of the induced current before t =
.25 seconds.

ii.)  Just after t = .25 seconds?
Solution:  --From the graph, the magnetic field is still negative and, hence,
into the page just after t = .25 seconds.
--The magnetic field is getting smaller (i.e., it's proceeding back toward zero)
just after t = .25 seconds.
--A decreasing magnetic field (hence, magnetic flux) will induce a current
that fights the decrease.
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--The induced magnetic field that fights a decreasing external magnetic field
directed into the page will itself be directed into the page.
--The induced current that produces such an induced field will be in the
clockwise direction.  That is the direction of the induced current after t = .25
seconds.

Note:  The EMF at t = .2 seconds is -.36NR2 while the EMF at t = .3

seconds is .54NR2.  As the EMF and the change in flux are essentially the
same, this tells us that the changes are different on either side of t = .25
seconds and, hence, that the induced currents will be in different directions.
This is really the only generalization we can make from the EMF
information.

f.)  Derive the general expression for the induced electric field setup in the
coil.

Solution:  The last Calculus you will see:  The relationship that is important
here is:

        
    
N

dφm

dt
= − E • dl∫ ,

where E is the electric field evaluated along a differential path-length dl.  In
most problems, the magnitude of E  is assumed to be constant and in the
direction of dl, so the above equation becomes:

          
  
N

dφm

dt
= −E dl∫ .

In this case, the integral is simply adding differential sections around a closed
circular loop (i.e., the integral equals 2r, where r is the radius of the circular
path).  Using this, we get:

   

    

N
d
dt

E dl

N R t t E R

E
NR t t

mφ = −

⇒ π −[ ] = − π

⇒ =
− −[ ]

∫
          

          

2 2

2

36 9 2

36 9

2

( )

( )
.

g.)  An electron is placed at R/2 in the field.  Derive an expression for its
acceleration at time t = 3.3 seconds.  For this, assume N = 15 and R = .2 meters.

Solution:  N.S.L. maintains that F = ma.  As the force in this case is generated
by the electric field E, we can also write F = qE.  Combining the two, we get a =
qE/m.  Substituting R/2 for R in the general electric field expression derived
above, we get:
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FIGURE VIII
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Note:  The electric field at t = 3.33 seconds is only 4.14x10-3 nt/C.  What makes
this acceleration so large is the charge to mass ratio q/m.

17.12)  The transformer shown in Figure VIII has
1200 winds in its primary coil and 25 winds in its
secondary.  The resistance in its primary is 80 Ωs,
the resistance in its secondary is 3 Ωs, and the
primary's inductance is Lp = 10 mH.  A 110 volt DC
power supply is hooked into the primary providing an
8.25 amp current to the system.  The switch has been
closed for a long time.  When the switch is opened, the
current drops to zero in .04 seconds.

a.)  What is the induced EMF across the primary before the switch is
opened?

Solution:  The inductor-induced EMF across the primary when there is no current
change in the circuit is zero.

b.)  What is the induced EMF across the primary during the current change?
Solution:  When there is a current change in the primary circuit, the inductor-
induced EMF setup across the primary coil is:

   ε p= -L ( ∆ i/ ∆ t)

       = -(10-2 H)[(0 - 8.25 A)/(.04 sec)]
       = 2.06 volts.
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Vac

levitating plate with 
  egg

steel rod

c.)  What is the current in the primary during the current change (i.e., after
the switch is opened)?

Solution:  The only voltage in the circuit after the switch is opened is that due to
the induced EMF across the primary coils of the transformer.  As such:

    ip = ε p/R

         = (2.06 v)/(80 Ω)
        = .0257 amps.

d.)  What is the current in the secondary before the switch is opened?
Solution:  In the secondary circuit, there is no power supply.  There is also no
changing flux before the switch is opened.  Therefore, the induced EMF across
the secondary will be ZERO before the switch is opened, and the induced current
will also be zero.

e.)  What is the current in the secondary after the switch is opened and
DURING the current change?

Solution:  After the switch is opened, the secondary current will be such that:

Np/Ns = is/ip
⇒      is = ipNp/Ns

 = (.0257 amps)[1200/25]
 = 1.23 amps.

f.)  Is this a step-up or step-down transformer?
Solution:  As Ns< Np, the transformer must be a step-down type (the secondary

voltage is stepped down relative to the primary voltage).

17.13)  An AC source is attached to a coil that has a vertical,
steel bar down its axis.  When the power is turned on, an
alternating magnetic field is set up along the axis of the bar.
An aluminum plate is centered over the bar at its upper end.
When power is provided to the coil, the plate levitates.

a.)  Is aluminum a magnetizable material?
Solution:  No!  Aluminum is not like iron.  Its atoms don't have
more electrons spinning in one direction than the other, so
aluminum atoms are not magnets unto themselves as is the case with iron atoms.

b.)  Why does the plate levitate?
Solution:  Although aluminum isn't magnetizable, it is a metal.  As such, it has
metallic bonding and it does have valence electrons that are free to move around
within the structure.  So what's going on within the plate?  The changing magnetic
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field through the coil produces a changing magnetic flux through the plate.  That
changing flux induces an  EMF that motivates free charge (electrons) in the plate to
move about.  The motion of those electrons sets up a magnetic field of its own
(remember, charge in motion generates a magnetic field).  This induced magnetic field
will alternate just as does the external magnetic field produced by the coil.  The
difference is that the two fields will be out of phase with one another.  That is, when
the field produced by the coil has the upper end of the steel acting like a north pole,
the bottom surface of the plate will be acting like a north pole.  The repulsion between
the opposing magnetic fields provides the force that levitates the plate.

c.)  An egg is broken onto the plate.  What will happen to the egg . . . and
why?

Solution:  The motion of the electrons in the plate will cause the plate to heat.  If you
put an egg onto the plate, it will cook.  As bizarre as this sounds, the demo actually
works--you can cook an egg on the levitating aluminum plate.

17.14)  What is inductance?  How is it comparable to resistance and capacitance?
Solution:  The original presentation of Faraday's Law maintained that whenever there
was a changing magnetic flux through a coil, that changing flux would be accompanied
by an induced EMF.  Mathematically, this was represented as ε  = -N(d φ m/dt).  When

dealing with coils in electrical circuits, though, it was observed that the changing
magnetic flux was really being generated by a change in the current through the coil.  To
reflect that fact in a mathematical sense, someone decided to write Faraday's Law in
terms of di/dt instead of d φ m/dt.  The proportionality constant required to make the

relationship work was called the inductance L of the coil.  With that constant, Faraday's
Law became ε  = -L(di/dt).  In short, inductance is the proportionality constant that
relates the induced EMF (i.e., the voltage across the coil's leads) and the current change
di/dt that created the induced voltage in the first place.

It is interesting to note that all of the circuit elements you have run into so far have
had defining parameters that have been proportionality constants that related the
voltage across the element to either the current through the element or the charge
accumulated on the element.  For resistors, resistance was defined such that V = iR; for
capacitors, capacitance was defined as q = CV.  Inductance follows the pattern nicely.

17.15)  How do transformers work?
Solution:  A transformer is made up of two coils that are not electrically connected but
that are magnetically coupled.  Normally used in an AC setting, a voltage change across
the coil in the primary creates a changing magnetic flux through the secondary coil
(remember, the two coils are magnetically linked) which produces an EMF in the
secondary coil.  It is this EMF that drives current in the secondary coil.

Transformers are used primarily for transferring power from one part of an electrical
circuit to another part without electrically connecting the two parts.  In addition, if the
number of winds Ns in the secondary coil is greater than the number of winds Np in the

primary coil, the secondary voltage will step up  relative to the primary voltage (this is
called a step-up transformer), with a proportional stepping down of the current.    (The
opposite of this is the step-down transformer in which Ns < Np.)  Europe's electrical wall
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sockets, for instance, run at 220 volts.  For you to use your electric shaver--a device that
runs on 110 volt AC--you have to use a step-down transformer to get the shaver to work
properly.

17.16)  You have just built from scratch a stereo system.  You have 8 ohm
speakers you would like to plug into the system, but as it stands the system's
unrestricted output impedance is 60 ohms.  Assuming you don't want to
completely redesign the entire system, what would you have to do so that your
set-up could run the 8 ohm speakers without power loss.  Be specific and include
numbers where applicable.

Solution:  To match the impedance between the two units, you have to use a

transformer.  The relationship that governs the turns-ratio is (Np/ Ns)2 = Zst / Zload,

where Zload is the true load resistance (i.e., that of the speakers) and Zst is the

impedance of the signal's source.  Putting in the numbers for our situation, we need
a transformer whose turns-ratio is:

 (Np/ Ns) = [Zst / Zload]1/2

=[(60 ohms)/(8 ohms)]1/2

=2.7386

Using a transformer whose  Np = 274 winds and whose Ns = 100 winds would do

the job.


